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This paper provides methods and experimental results for recursively estimating the 

sprung mass of a vehicle driving on rough terrain. It presents a base-excitation model of 

vertical ride dynamics which treats the unsprung vertical accelerations, instead of the 

terrain profile, as the ride dynamics model input.  It employs recently developed methods 

based on polynomial chaos theory and on the maximum likelihood approach to estimate 

the most likely value of the vehicle sprung mass.  The polynomial chaos estimator is 

compared to benchmark algorithms including recursive least squares, recursive total least 

squares, extended Kalman filtering, and unscented Kalman filtering approaches.  The 

paper experimentally demonstrates the proposed method.   The results of the 

experimental study suggest that the proposed approach provides accurate outputs and the 

proposed method is less sensitive to tuning parameters when compared with the 

benchmark algorithms. 

1 Introduction 
This paper provides methods and experimental results for recursively estimating the sprung 

mass of a vehicle driving on rough terrain.  An accurate onboard estimate of vehicle mass is 

valuable to active safety systems as well as chassis and drivetrain controllers.  These autonomous 

systems and controllers schedule gear shifts, actuate brakes, induce steer, schedule fuel injection, 

warn drivers of rollover susceptibility, etc.  Many of them rely on accurate knowledge of the 

mass of the vehicle to perform optimally.  Since vehicle mass can vary significantly from one 

loading condition to the next, the estimate of vehicle mass needs to be updated online, a 

constraint which adds its own challenges to the development of the mass estimator. 

A significant number of mass estimation algorithms have been developed for on road 

conditions.  The authors have surveyed this literature and included a brief summary in the 

introduction of a paper by Kang, Fathy, and Stein (2008), where another novel algorithm for on 

road vehicle mass estimation was presented.  Much of the scientific literature for vehicle mass 

estimation uses the longitudinal vehicle dynamics, drivetrain shuffle dynamics, or combined 

lateral, yaw, and roll dynamics to estimate the vehicle mass.  Despite the research successes for 

on road mass estimation, the off-road real-time vehicle mass estimation problem remains 

relatively unexplored, and existing solutions to this problem remain difficult to apply in practice.  

One of the main challenges is the fact that the motions introduced by rough terrain are significant 

enough to make mass estimation based on longitudinal vehicle dynamics infeasible; this rough 

terrain, however, makes mass estimation based on vertical vehicle dynamics becomes much 

more viable due to the presence of significant terrain-induced excitations.  The overarching goal 

of this paper is to develop an accurate and fast real-time online mass estimator for vehicles 
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negotiating rough terrain, and to demonstrate its viability through experimental data collected 

from an actual vehicle.   

A number of excellent papers and patents have explored the use of the ride dynamics for 

vehicle mass estimation.  Often, these methods assume that the terrain profile is known, 

estimated, or measured (Blanchard, Sandu and Sandu (2009a,b,2010), Best and Gordon (1998), 

Huh et al. (2007), Kim and Ro (2000), Lin and Kortum (1992), and Shimp (2008)).  Others 

assume that the suspension is equipped with an active or semi-active force actuator which 

provides a known suspension force (Ohsaku and Nakai (2000), Rajamani and Hedrick (1995), 

and Song, Ahmadian, and Southward (2005)).  Finally, Tal and Elad (1999) analyzed the 

dynamics in the frequency domain to reveal important resonance frequencies related to the value 

of the sprung mass and suspension spring constant.  Unlike the methods above, this paper seeks 

an estimation algorithm which does not require a priori knowledge or explicit measurement or 

estimation of road terrain and does not require active or semi-active suspension force actuation.  

This study also aims at using a minimal/inexpensive sensor set to achieve the mass estimation. 

The proposed solution presented in this paper adopts a base excitation approach to real-time 

off-road vehicle mass estimation.  It introduces the base excitation model which treats the 

vertical accelerations at the four unsprung masses as measured inputs to sprung vehicle dynamics 

and uses the governing equations of these sprung vehicle dynamics for mass estimation.  This 

approach furnishes estimation schemes that do not require a priori knowledge, measurement, or 

estimation of the terrain.  This paper also explores potential benefits of using a polynomial chaos 

based approach (Blanchard, Sandu and Sandu (2009a,b,2010)) for recursive parameter 

estimation (Pence, Fathy and Stein (2010) and Pence, Fathy and Stein (2011)) and compares it 

with benchmark algorithms such as regression approaches and state-filtering approaches.  

This paper is structured as follows.  The following section presents the derivation of the full 

vehicle base excitation model used in this work‟s proposed estimator. The proposed recursive 

polynomial chaos, and benchmark regressor and filtering based estimators are presented in 

Sections 3–5, respectively. Section 6 presents the results related to investigating the degree to 

which a vehicle‟s pitch dynamics contribute to the mass estimation problem within the context of 

an estimator that uses a base-excitation based model. Section 7 details the experimental setup 

followed by comparisons of the experimental results between the proposed recursive Polynomial 

Chaos based estimator and the regressor and filtering methods in Sections 8–9, respectively. 

Concluding remarks are in Section 10. 

2 Base Excitation Full Car Ride Model 
Vehicle dynamics literature commonly uses a seven degree of freedom system to model the 

general behavior of a vehicle‟s ride dynamics.  An illustration of this model is provided in Figure 

1.  The seven degrees of freedom include the vertical      , roll   , and pitch    motion of the 

sprung mass, as well as the vertical motions                         of the four unsprung masses.  
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The motions                         of the four tire surfaces at the ground are the inputs to the 

seven degree of freedom model. 

The base-excitation concept treats the unsprung mass motions instead of the terrain as the 

model input (as illustrated in Figure 2). This methodology is adopted from the vibrations 

literature (Inman (2001)) and has been used for mass estimation by Pence, Fathy and Stein 

(2009a and 2009b) and Song, Ahmadian and Southward (2005), but these methods only 

considered a quarter-car model 

 
Figure 1: Seven degree of freedom model of vehicle ride dynamics. 

of the vehicle.  As a key difference from the traditional full-car ride model, the full-car base 

excitation model treats the vertical unsprung mass accelerations                            , the 

longitudinal velocity   in the x-direction with respect to body fixed axes, and the sprung mass 

pitch velocity     as measured model inputs.  (A reduced order model at the end of this section 

will require only the unsprung mass accelerations as the system inputs).  The “dot” notation 

denotes the derivative with respect to time.  The resulting system models the dynamics of the 

sprung mass in the following three degrees of freedom: vertical      , pitch   , and roll   . The 

base excitation model is shown in Figure 3. 

 
Figure 2: Base excitation concept 

 
Figure 3: Base excitation model of full car ride dynamics. 

The base excitation model has a number of key benefits for vehicle mass estimation compared 

with the traditional full-car ride model: the model avoids requiring knowledge of the values of 

the unsprung masses, tire stiffness and damping, and, most importantly, terrain profile.  Also, the 
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reduced degrees of freedom result in fewer model states and hence, less computational 

complexity. 

This paper makes the following simplifying assumptions: 

1. Negligible yaw velocity (    ) 

2. Negligible lateral velocity (   ) 

3. Small pitch   and roll   angles 

4. Linear suspension elements 

5. Left-right symmetry in suspension elements, e.g., the front left spring stiffness is the 

same as the front right spring stiffness, e.g.,             . 

6. The c.g. is at half the track width    , a known distance   behind the front axle of the 

vehicle, and a distance   forward from the rear axle.  The wheelbase length is    . 

Applying Euler‟s laws of motion to the sprung mass of Figure 3 results in the following 

equations which govern the dynamic behavior of the base excitation full car model: 

                               

                    

                    

(1) 

Here,    is the net downward force acting on the sprung mass,    is the net moment or torque 

about the   axis, and    is the moment acting about the   axis.  These forces and moments are 

produced via the suspension elements as follows: 

       

             

 (2) 

                           (3) 
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The forces                  are due to suspension deflections and velocities and are 

calculated by 
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For convenience, this section defines the following terms: 

 
      

                             

      
 (9) 

 
   

                            

      
 (10) 
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               (11) 

         (12) 

The terms       and    can be interpreted as the average vertical position and average pitch of 

the unsprung masses.   Then, the terms   and   can be interpreted as the average vertical and 

angular displacements of the sprung mass relative to the unsprung masses.  

Given definitions (2) Through (12), the   and   equations of (1) can be written as: 

                                   

                         
(13) 

The vertical force    and pitch moment    can also be written as functions of the terms 

defined in (9) through (12): 

                                                   (14) 

                                          

                
(15) 

Equations (13) through (15) are independent of the roll motion of the sprung mass.  As a 

result, the roll dynamics can be neglected without sacrificing accuracy in the calculation of the 

vertical and pitch motion.  This result enables a lower order (and less computationally expensive) 

estimator. 

The state space representation of Equations (13) through (15) is as follows: 

 

 

   
   
   
   

  

 
 
 
 
 
 
 

  
         

 

         

 

  
          

 

          

 
  

          

  

          

  

  
             

  

             

   
 
 
 
 
 
 

 

  

  
  

  

 

 

 
 
 
 
 
 

  
  

      

  

      

  
  

      

  

      

 
 

  
 

      

 

      

  
  

      

  

      

 
 
 
 
 
 
 
 

 
 
 
 
 
 
      

      

      

      

     
 
 
 
 
 

 

(16) 

The states are     ,      ,     , and      . The set of dynamic state equations in (16) 

govern the motion of the base excitation system shown in (16).  These dynamic equations can be 

combined with the estimation techniques of this paper for a potential solution to vehicle mass 

estimation.  There are a few factors, however, that motivate reducing this set of state 

equations/sensor inputs in (16) to a lower dimensional set.   The first motivating factor is the 

desire to reduce the computational complexity of the estimator.  This is important for 

online/onboard algorithms which may have limited access to memory and computational 

resources on an onboard computer.  The second factor is motivated by the desire to reduce the 

number of sensors required to perform the online estimation.  Based on these motivating factors, 

this section derives a reduced order model, but will also note that the lower order estimator also 

has a lower fidelity than an estimator which uses the higher-order set of state equations given in 
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(16).   For example, simulation results in Section 6 show that an improved estimate is obtained 

by using (16) compared to the reduced order model when the vehicle experiences large pitch 

values.  

To reduce the set of state equations/sensor inputs to a lower dimensional set, this paper notes 

that in many vehicles, the coupling term between the vertical and pitch dynamics may be 

negligible.  In Equation (16), the vertical and pitch dynamics are coupled by the terms       

      ,             ,               and              .  In some cases, the 

numerator of each term is small, and the denominator is large.  For example, if        , and 

        the numerators are zero and there is no coupling between the vertical and pitch 

dynamics.  When these coupling terms are not weak, a stronger assumption is required, which is 

to assume that the pitch motion of the vehicle is negligible.  Either of these assumptions enable 

decoupling of the pitch and vertical dynamics, and the set of equations given in (16) can be 

reduced to the following second order state equations that govern the vertical motion of the 

sprung mass: 

 

 
   
   

   

  
         

 

   

 

  
  

  
   

 
  

   

   

                              
 

      

 

      

 

      

 

      
 

 
 
 
 
      

      

      

       
 
 
 

 

(17) 

Here,            .  The measured output   is the vertical acceleration        of the sprung 

mass at the center of gravity location, and the output equation is as follows:  

 
   

         

 

   

 
  

  

  
  (18) 

The known or measured variables/parameters of equations (17)–(18) are the four unsprung mass 

accelerations, the distances from the axles to the sprung mass c.g. location, and the front and rear 

spring stiffness values.  The unknowns parameters/variables include the value of the vehicle 

sprung mass  , the damping term   , and the state variables    and   . 

The estimation algorithms are discussed in the following sections. 

3 Polynomial Chaos and Maximum Likelihood 
Pence, Fathy, and Stein (2010 and 2011) have developed a recursive maximum likelihood 

estimator for state-space systems using polynomial chaos theory.  This estimator builds on the 

polynomial chaos technique for modeling multibody dynamic systems with uncertainties 

developed by Sandu, Sandu, and Ahmadian (2006a and 2006b) and extends the batch maximum 

a posteriori estimator developed by Blanchard, Sandu, and Sandu (2009a,b,2010) to applications 

that require recursive estimation. Existing research has explored the use of recursive polynomial 

chaos based algorithms for vehicle mass estimation (Pence, Fathy, and Stein (2009b) and Shimp 
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(2008)).  The study presented here, however, uses an algorithm that estimates parameters based 

on an integrated cost function which is different from the previous approaches which used an 

algorithm that updates parameter estimates based on an instantaneous cost function.  The earlier 

work by Pence, Fathy, and Stein (2009b) showed that estimators based on the instantaneous cost 

criteria resulted in estimates having significant variance.  Another difference between this and 

the earlier work is that the earlier research was directed at quarter-car suspension models. 

The polynomial chaos approach is applied directly to the system of Equations (17)–(18).  

Because the system of Equations (17)–(18) is linear, the Galerkin approach (discussed in Pence, 

Fathy, and Stein (2010 and 2011)) can be applied.  To apply the polynomial chaos based 

algorithms, the unknown parameters are treated as random variables.  The polynomial chaos 

algorithm requires upper and lower bounds on the unknown parameters which can be inferred 

from prior knowledge.  This paper assumes that the true values of the unknown parameters could 

potentially be any values between the lower and upper bounds with equal probability, i.e., it 

assumes that the prior distributions are uniform.  With known upper and lower bounds, the 

random variables representing the unknown mass and damping terms can be written as functions 

of independently identically distributed (iid) polynomial chaos variables    and   , each of 

which are uniformly distributed over the interval [-1, 1]: 

           

           
(19) 

Here,    and    are respectively the known mean values of the mass   and damping    

random variables.  The terms    and    are the known maximum variation values of   and    

respectively from the mean values    and   ; e.g.,                    where             

is the largest possible numerical value of the mass  .  The goal of polynomial chaos based 

estimation is to estimate the most likely realizations of    and    and hence, by (19), the most 

likely values of the unknown mass   and damping term   . 

Applying the Galerkin method of polynomial chaos theory to the system of Equations (17)–

(18) (with the unknown parameters   and    replaced by their polynomial chaos counterparts 

given in (19)) results in the following set of deterministic state equations: 

 

    
        

      
    

  

  
    

   (20) 

Here,                  is a matrix/vector of zeros having dimension  , the identity 

matrix      has dimensions    , and               where   is the user-selected 

maximum polynomial chaos order, (    in the experiments of this paper).  The state vector 

      is a vector of polynomial chaos expansion coefficients.  Finally, the matrices      

     and          are defined as follows: 
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  (23) 

The polynomial chaos based estimator is asymptotically stable if the eigenvalues of the state 

transition matrix in Equation (20) have negative real parts.  For the base excitation model, 

stability is guaranteed when the lower bounds on the parameter prior distributions are greater 

than zero.  The multivariate polynomials              are functions of the Legendre 

polynomials (Poularikas (1999))                  and                  as follows: 

 
                       

   

 
                

            
(24) 

The inner products                     are defined as follows: 

 

                                            

 

  

 

  

 (25) 

Since the integrals are evaluated over the event space of the random variables, the inner 

product                     is a known deterministic quantity; as a result, Equation (20) is a 

deterministic set of state equations that can be solved numerically to determine the value of the 

state vector  .  Also, since the multivariate polynomials              are orthogonal with 

respect to the inner product in Equation (25), the matrix       is well defined. 

Following the concepts of polynomial chaos theory, the states    and    of Equation (17) are 

functions of the random variables    and   , and are related to the state vector   of Equation 

(20) through a polynomial chaos expansion approximation: 

 
 
  

  
        

         

         
  (26) 

This approximation becomes exact in the least squares sense as     (Ghanem and Spanos 

(1991)).  Substituting Equations (26) and (19) into (18) results in the polynomial chaos 

approximation output     which is a function of the unknown variables    and   . 

 
    

         

       

          

       
    (27) 

The output    is not an output trajectory but rather an output process or family of trajectories.  

From (27), one can see that given realizations of    and   ,    collapses to an output trajectory.  

The goal of recursive maximum likelihood is to determine the realizations of    and    that 

make    most like the measured output   in some sense.   This is done by selecting    and    so 
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that they optimize the likelihood function (assuming zero mean Gaussian measurement noise 

with variance   
 ): 

 

                 
                    

 

   
 

 

   

  (28) 

Pence, Fathy, and Stein (2010 and 2011) developed techniques for recursively calculating 

estimates of the unknown parameters that recursively seek to optimize the likelihood function 

(28).  The key limitation of the polynomial chaos based method is the fact that the polynomial 

chaos approximation is only exact in the limiting sense as     which is not numerically 

feasible.  The authors have found, as a rule of thumb, that     is a good approximation for this 

mass estimation problem.  A general procedure to determine an acceptable value for   is to start 

with a small value for   and then increase the value until the change in the resulting estimates is 

negligible. 

4 Regressor Model Based Estimation Methods 
An alternative approach to using polynomial chaos based estimation is to use regressor-model 

based algorithms such as recursive least squares (RLS) (Ioannou and Sun (1996)) or recursive 

total least squares (RTLS) (e.g., Kubus, Kroger, and Wahl (2008)).  Under certain Gaussian 

measurement noise assumptions, and if the states    and    of Equations (17) are measured 

explicitly, RLS methods can potentially produce unbiased estimates.  Unfortunately, full-state 

measurements require measuring suspension displacements and velocities at each corner of the 

vehicle, as well as the sprung mass acceleration.  This paper follows Fathy, Kang, and Stein's 

(2008) method in using pre-filtering as a precursor to mass estimation.  Such pre-filtering has 

two very attractive advantages, namely, (a) it allows the estimation process to focus on those 

frequencies where inertial dynamics are more visible, and (b) it makes it possible to estimate 

sprung mass using sprung and unsprung mass accelerations, without any need to use additional 

sensors for displacement and velocity. 

RLS and RTLS algorithms rely on the regressor model shown in Equation (29) and cannot be 

applied directly to state-space systems such as the system modeled by Equations (17)–(18). 

      
    (29) 

The term    is the measured regressor output, the term    is the regressor vector which is 

also known/measured, and the term    is the unknown parameter vector.  For vehicle mass 

estimation, the regressor model can be derived from the output equation, Equation (18).  Then, 

the regressor output    is            , the regressor vector    is       , and the unknown 

parameter vector    is     
 , i.e., 

                   
 
  

  (30) 

The regressor output    and regressor vector    must only contain known/measured 

variables, but the states    and    are not measured.  To address this problem, this paper applies 

Laplace-domain filtering to obtain a regressor model in which both    and    only contain 
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known/measured values.  These Laplace domain filters act as pseudo-integrators to obtain 

estimates of velocity and displacement from measurements of suspension acceleration.  

Assuming zero initial conditions for the states    and   , the system of equations given in (17)–

(18) can be represented in the Laplace-domain by the following transfer function: 

     

    
 

            

                
 (31) 

In (31),   is the Laplace operator,      is the Laplace transform of the sprung mass 

accelerations  , and      is the Laplace transform of the input  .  Alternatively, (31) can be 

written as follows: 

                                             (32) 

Dividing both sides of (32) by     , results in the following filtered regressor model: 

 
         

           

    
  

      

    

            

    
  

 
  

  (33) 

The user-selected denominator      should be a polynomial function of   that is at least 

second order to ensure that the transfer functions in (33) are proper.  The polynomial      must 

also have complex roots with negative real parts to guarantee stability.  Reverting back to the 

time domain, the regressor model shown in Equation (33) becomes:  

 
          

 

    
         

  

    
   

 

    
        

 
  

  (34) 

The term               represents the time domain signal     filtered by the Laplace 

domain transfer function         .  The use of the operator   instead of   is to distinguish 

between the time and Laplace domains. 

Equation (34) contains only known/measured variables in the regressor output    

                       and regressor vector                              .  

The only unknown variables in (34) are the elements of the parameter vector         
 .  

Therefore, Equation (34) is a valid model for these regressor model based algorithms.  However, 

two significant problems arise when using Equation (34).  First, both the regressor output    and 

regressor vector    contain measurements of both   and  .  Thus, the noise in the output    and 

regressor vector    is correlated.  This leads to biased estimates when using recursive least 

squares algorithms.  This approach was explored in a simulation study by Pence, Fathy, and 

Stein (2008a).  Total least squares regression can potentially lead to less biased estimates (Moon 

and Stirling (2000)).  However, a second problem with using Equation (34) affects both least 

squares and total least squares methods: these methods are both sensitive to the user-selected 

denominator     .  As the experimental validation section will show, slightly different tunings of 

     lead to significantly different estimates of the unknown parameters, and tunings that are 

optimal for one terrain are not necessarily optimal for another.  
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5 Filtering Methods 
Filtering algorithms, such as the Extended Kalman Filter (EKF), Unscented Kalman Filter 

(UKF) (Simon (2006)), particle filter (Ristic, Maskell and Gordon (2004)), etc., can estimate 

both the states and unknown parameters of state space systems.  Unlike the estimation methods 

discussed in the paragraphs above which require a regressor model, the filtering algorithms can 

be applied to state space systems such as the base excitation system of Equations (17)–(18).  

First, however, the state vector must be augmented to include estimates of the unknown 

parameters.  This augmented set of state and output equations for the base excitation system of 

Equations (17)–(18) is given as follows: 

 

 

   
   
   
   

  

 
 
 
 
 

  

 
        

  
   

  

  
    

 
  

 
 
 
 

 

 

(35) 

 
   

        

  
   

  

  
   (36) 

The state    is an estimate of the unknown value of the vehicle sprung mass  , and the state 

   estimates the unknown damping term   .  The filtering methods discussed above can be 

applied to this augmented system of Equations (35) and (36).  This augmented system has a 

higher dimension and is significantly more nonlinear than the (linear) system of Equations (17)–

(18).  Similar to the regressor model approaches, the filtering methods are more difficult to tune 

than the proposed polynomial chaos approach.  The filtering methods have a large number of 

user-defined tuning variables: the     process noise covariance matrix, the measurement noise 

variance, the initial conditions for the     estimate covariance matrix, and the initial conditions 

for the state vector (a total of at least 25 scalar tuning parameters).  Despite being difficult to 

tune, the EKF is especially attractive because of its low computational demand compared with 

the polynomial chaos approach and even the UKF and particle filter.   

6  Pitch dynamics investigation 
In Section 2, the 2

nd
 order base-excitation model Equation (17) was developed assuming the 

pitch dynamics had negligible contribution to the estimation of the sprung mass. In an effort to 

investigate the validity of this assumption, a maximum likelihood polynomial chaos mass 

estimator was developed based on the 4
th

 order model in (16) that includes the pitch dynamics. 

The performance of the two estimators was compared via a numerical simulation of a  nonlinear 

seven degree-of-freedom full vehicle model, developed by Li, Sandu, and Sandu (2005), that was 

parameterized similar to the 2001 Nissan Altima, GXE sedan (as used in Section 7). The 

simulation induced a relatively large pitch (about 8 degrees) in the vehicle by driving it over a 30 

centimeter bump.  Figure 4 shows the relative performance of the two estimators. The 4
th

 order 

estimator is shown in (a) and converged to an answer within less than 1% of the actual vehicle‟s 
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mass. However, the performance of the 2
nd

 order estimator, shown in (b), resulted in an estimate 

with about a 12% error.  

This study implies that inclusion of the pitch dynamics in the estimator can increase the 

accuracy of the estimates when larger pitch is experienced. The computation cost of the added 

pitch dynamics was roughly 4x that of the simpler 2
nd

 order estimator; this corresponds with the 

O(n
2
) different between the size of the two models. Therefore, an additional degree-of-freedom 

is available in choosing which estimator to implement. If sufficient computational resources are 

available and reasonably large pitches are expected then the 4
th

 order estimator is recommended. 

  

(a) (b) 
Figure 4: Estimator results for a simulated vehicle driving over a 30cm bump. (a) Shows the results for the 4th order 

Maximum Likelihood estimator that includes the pitch dynamics. (b) Shows the results for the proposed 2nd order 

Maximum Likelihood estimator that does not include the pitch dynamics. 

The remainder of this paper is dedicated to the experimental validation of the methods of this 

paper. 

7 Experimental Setup 
The vehicle used for the experiments of this paper was a 2001 Nissan Altima, GXE sedan.  

The accelerometers used to measure both the sprung and unsprung mass accelerations were 

Silicon Designs, Inc. single-axis accelerometers, model 2210-005.  Unsprung mass 

accelerometers were attached to the suspension struts (Figure 5) using J.B. Weld® epoxy.  The 

sprung mass accelerometer was attached to the base of the cup holder between the front seats 

(Figure 6) using Duro® super-glue.  The data acquisitioning system was a National 

Instruments® model NI USB-6221.  Data samples were taken at a 500 Hz or 1 kHz rate, filtered 

using a low pass filter as discussed later, and then downsampled to a 100 Hz rate.  The 

accelerometers were connected to the acquisitioning system in differential mode. 

A Proform® 67650 Vehicle Scale System was used to measure the total vehicle weight 

(including the driver and acquisitioning equipment weight), which was found to be 1460 kg 

(3220 lbs).  This Vehicle Scale System also determined the Center of Gravity (cg) location to be 

a distance of 62% of the wheelbase length (2.59 m) forward from the rear axle.  The tires and 
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wheels were also weighed and found to have a total mass of 70 kg (150 lbs).  The remaining 

mass of the unsprung components (hub, suspension, axle, etc.) was estimated to be 94 kg (210 

lbs) based on shipping weight calculations published on an internet website: Amazon.com
TM

.   

These unsprung components with their associated shipping weight estimates are listed in Table 1.  

Based on the measurements of the tire and wheel weight and the estimated value of the 

remaining unsprung mass, the total sprung mass was 1296 kg (2860 lbs). 

 
Figure 5: Placement of the unsprung accelerometer. 

 
Figure 6: Location of sprung mass accelerometer. 

Table 1: Mass of unsprung suspension components. 

Unsprung Suspension Components and Corresponding Shipping Weights (kg) 

Front suspension (one corner) Rear suspension (one corner) 

Hub Assembly 2.3 kg Hub Assembly 2.4 kg 

½ of Front Axle 4.2 kg Knuckle 6.4 kg 

Steering Knuckle 3.7 kg Strut Assembly 4.8 kg 

Strut Assembly 4.4 kg Brake Drum 4.4 kg 

Disc Brake Rotor  6.3 kg Drum Shoes 1.0 kg 

Brake Caliper and Pads 2.9 kg Brake Hardware 0.8 kg 

½ of Control Arm 2.2 kg Wheel Cylinder 0.5 kg 

  ½ of Bottom Control Arm 0.6 kg 

    

Total 26 kg Total 20.9 kg 
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The stiffness values of the front and rear suspensions were determined respectively to be 

41,800 N/m and 31,700 N/m per corner, e.g., the front-right suspension stiffness was 41,800 N/m 

which was also the value of the front-left stiffness; the total front stiffness was 83,600 N/m and 

the total rear stiffness was 63,400 N/m.  These values were determined by placing a known mass 

of 53 kg on the sprung body at the front middle and then rear middle of the vehicle; at each 

placement, the distance between a fixed point on each tire hub and a fixed point directly above 

on the body of the vehicle was measured using a ruler with millimeter precision.  Each 

measurement was compared with its unloaded value to determine the respective displacement in 

the suspension.  The known added mass and suspension displacement values were assessed with 

a vertical static force balance to determine the stiffness values of the suspensions.  Each 

suspension displacement for the two different placements is shown in Table 2. 

Table 2: Suspension displacement under a 53 kg load. 

Placement 

location 

Front Left 

Displacement 

Front Right 

Displacement 

Rear Left 

Displacement 

Rear Right 

Displacement 

Front Middle 8.5 mm 8.5 mm -3.0 mm -3.0 mm 

Rear Middle -4.0 mm -4.0 mm 13.5 mm 13.5 mm 

Experimental results from three terrain types are presented in this paper.  The three terrains 

are listed in order from smoothest to roughest: smooth pavement, dirt/gravel terrain, and rough 

pavement with potholes and cracks.  Figure 7 shows frequency responses of the unsprung and 

sprung mass accelerations that resulted from these three terrain types.  The target speeds were 40 

km/h (25 mph) for the smoothly paved terrain, 25 km/h (15 mph) for the dirt/gravel terrain, and 

40 km/h (25 mph) for the roughly paved terrain.  

 
Figure 7: Spectrum of acceleration magnitudes for (a) smooth pavement, (b) dirt/gravel terrain, (c) rough pavement. 

Figure 8 shows a frequency response plot of the output (sprung mass) acceleration relative to 

the input (averaged unsprung mass) acceleration for the dirt/gravel terrain.  This plot was 

obtained by taking the discrete-Fourier transform of the output divided by the discrete-Fourier 

transform of the input.  A Bode magnitude plot (solid line) of the base excitation model, 

Equation (17), with        and          is also shown on this graph as a reference.  This 

input-output frequency plot shows a resonance peak between 0.9 – 4 Hz.  It also shows increased 

magnitudes for frequencies above 10 Hz.  These large magnitudes in the higher frequency range 
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are the effect of disturbances not captured by the base excitation model.  To reduce the effect of 

these disturbances on the parameter estimates, this paper applied a second order, low pass filter 

with a natural frequency of 5 Hz and a damping ratio of 0.7 to filter the sprung and unsprung 

acceleration signals. 

The recursive estimation algorithm based on polynomial chaos theory was applied to the data 

sets from the three terrains discussed above.  The polynomial order was set to be    , the 

bounds on the mass estimate were                  , and the bounds on the damping 

coefficient were 4             Ns/m.  Figure 9 shows the convergence of the polynomial 

chaos algorithm for vehicle sprung mass for the different terrain types.  For each terrain type, the 

algorithm converged to within 10% of the true sprung mass value.  Assuming convergence 

within 10% error to be acceptable, these results verify that the proposed method can be used 

successfully for vehicle sprung mass estimation on both smooth and rough terrain. 

 
Figure 8: A spectrum of input to output magnitude for the dirt/gravel terrain.  Both axes are shown in a logarithmic scale. 

 
Figure 9: Convergence of the proposed estimator for (a) smooth pavement, (b) dirt/gravel terrain, (c) rough pavement.  

The dashed line is the true mass value, and the dotted lines are the ±10% error lines. 
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Figure 10: Sensitivity of the polynomial chaos algorithm to varying the value of (A)                         with 

      , and (B)                   with        .  The dashed line is the true mass value, and the dotted lines 

are the ±10% error lines. 

The polynomial chaos algorithm requires a maximum of 6 user defined tuning parameters: the 

prior mean values    and   , the prior maximum variance values    and   , the value of the 

polynomial chaos order  , and the measurement noise variance   .   If    is a constant, its value 

does not affect the parameter estimates.  In that case, the polynomial chaos approach is not 

sensitive at all to the user define value of   .  Figure 10 shows the sensitivity of the polynomial 

chaos algorithm to various prior mean    and variance    values. 

8 Experimental Comparison with Regressor Methods 
Using the same three data sets discussed above, this section compares two regressor methods, 

Recursive Least Squares (RLS) and Recursive Total Least Squares (RTLS), against the 

polynomial chaos method discussed in the previous section.  The experimental study found that 

the regressor methods were sensitive to the tuning of the parameters in the user-selected 

denominator     .  In this experiment, the denominator was chosen to be              

  .  The value of   was fixed at          for RLS and         for RTLS, and the value of 

  was varied between 6 and 12 rad/s (0.95 – 1.9 Hz).  Figure 11 demonstrates this sensitivity for 

the RLS and RTLS approaches using the dirt/gravel terrain data.   

 
Figure 11: Sensitivity of varying ω for (a) RLS and (b) RTLS approaches for the dirt/gravel terrain. The dashed line is 

the true mass value, and the dotted lines are the ±10% error lines. 
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Figure 12: The convergence of the (A) RLS and (B) RTLS estimators for (a) smooth pavement, (b) dirt/gravel terrain, and 

(c) rough pavement. The dashed line is the true mass value, and the dotted lines are the ±10% error lines. 

The next experimental study demonstrates that the optimal (in the mean square sense) tuning 

of      for one terrain type is not necessarily optimal, or even appropriate, for another terrain 

type.  The optimal values of   and   for the rough pavement data were found using the 

optimization algorithm FMINSEARCH in Matlab® version 2008a.  For the RLS algorithm, the 

optimal values were        and         .  For the RTLS algorithm, the optimal values 

were        and        .  Figure 12 shows the convergence of the algorithms for the three 

terrain types using these estimator tuning values.  Although these values are optimal for the 

rough pavement, comparing Figure 12 with Figure 11 reveals that they are not optimal for the 

dirt/gravel terrain, and they are even outside of the ±10% error lines. 

9 Experimental Comparison with Filtering Methods 
This section applies two filtering methods, the Extended Kalman Filter (EKF) and the 

Unscented Kalman Filter (UKF) to the three data sets discussed above.  Similar to the regressor 

methods, the filtering methods can be difficult to tune, especially considering the fact mentioned 

above that they each require at least 25 scalar values to be tuned.  As an example, Figure 13 

shows the sensitivity of these tuning methods to the value of the measurement error variance.  

Despite the difficulty, the EKF and UKF algorithms can be tuned to converge to estimates that 

are nearly identical to those produced by the polynomial chaos maximum likelihood approach.  

This is shown in Figure 14. 

 
Figure 13: Sensitivity of the (A) EKF and (B) UKF estimators for different values of noise variance =         
       . 
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Figure 14: Convergence of the EKF, UKF, and polynomial chaos (PC) methods for (A) smooth pavement and (B) 

dirt/gravel terrain. 

Since the EKF algorithm is more computationally efficient than the polynomial chaos and 

UKF algorithms, when computational resources are limited, the polynomial chaos approach can 

help to tune the EKF algorithm offline, and then the EKF algorithm can be implemented online. 

10 Conclusions 
This paper has introduced recursive techniques for sprung mass estimation of vehicles on 

rough terrain.  It proposed a base excitation model that treats vertical unsprung accelerations, 

instead of the terrain profile or a suspension actuator, as the input to the estimation model. The 

experimental results demonstrated that the proposed method is viable for vehicle sprung mass 

estimation for vehicles driving on rough (and relatively smooth) terrain.  No prior knowledge of 

the terrain profile was required, and no active/semi-active suspension was required.  The 

polynomial chaos approach was compared with regressor model approaches and filtering 

approaches.  The regressor methods are concluded as not appropriate for this sprung mass 

estimation approach because of their sensitivity to tuning parameters.  The filtering methods 

were also more difficult to tune than the polynomial chaos approach, but they could be tuned to 

converge to nearly the same estimates produced via the polynomial chaos approach.  Based on 

these results, the polynomial chaos approach is recommended when sufficient computational 

resources are available, otherwise the extended Kalman filter is recommended. 
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